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ABSTRACT 

A general analysis of the amplitudes for (J’-+TU is presented. 

Angular distributions are calculated for the case $J’-$ar + p+p-rr~r in 

terms of partial wave amplitudes. In principle, this decay provides a 

laboratory for studying rr~~ scattering. The analysis applies, mutatis 

mutandis. for $-wn* and similar decays of the form +- VPP . The 

determination of the partial wave amplitudes for + ‘++nrr will determine 

0 0 
the phase shift difference 6 o - 6 2 if there is sufficient TI-TI d-wave to 

produce measurable interference. 
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I. INTRODUCTION 

The dominant decay of the +J ‘=~(3. 7) is v ‘-+nl~ . 
1 

The apparent 

quantum numbers of the + and +a are J 
P 

= 1- , fC _ o-- , The n~i 

system has I GC = oi+ 2 
which requires that its angular lnomentuln, in 

its rest frame, be even. The decay spectrum as a function of the ir~l 

invariant mass, ,m TTll ’ does not conform to naive expectations’ (phase 

Space for the effective Lagrangian ’ :P g$p+ ~-TT) even when final state 

interactions are included. A reasonably satisfactory description is given 

by chiral symmetry3’- If the amplitudes which lead to anisotropic distributions 

are eliminated. Preliminary data indicate the anisotropies are small and 

are thus consistent with the chiral symmetry picture. However. chiral 

symmetry offers - no a priori reason for the absence of anisotropies: in 

general they are expected to be present. 

Independent of chiral symmetry, the decay + ?-+nn i.s a remarkable 

source of information both for the interactions of the nev: particles and of 

“old” particles-pions. Since the hadronic interactions of the 4’ and the 

+ are feeble, we expect the decay amplitudes ?o be real except for rescattering 

corrections - a situation similar to that of K 
e4 ’ If the 7-7~ d-wave 

contribution is strong enough, it will be possible to determine 6 I=O- p 
Y d 

+ - 
lor :: v Rcattering in the region m = 500 MeV. 

lliT 

From the decays in which the + decays leptonically (* 7’1,Jp- , 

+ - 
* 7%e e ) a good deal of polarization information is available. In addition, 
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the +’ produced by e+e- annihilation is transversely polarized with 

respect to the beam. It is essential to exploit this polarization information 

to obtain the fullest understanding of the decay. 

There are five invariant amplitudes for the decay +‘- +~l~l . To 

see this we set q = $ (qi-q2), Q = qi+q2 where the V+ momentum is qf 

and the TT- momentum is q2 . Then denoting the $ ’ and + polarizations 

by E’ and E respectively we can form five invariants bilinear in E ‘E 
:: * 

:E’ E *, 

* iii 
E .q60.q, Eii.QEs.Q, < .q E*.Q, $Q E’.q. Each of these can 

be multiplied by a function of the Lorentz invariants formed from the 

momenta - say Q2 and P’. q where P’ is the $I’ momentum. 

An equally valid approach is to consider the crossed reaction 

iT$‘-TqJ. The independent helicity amplitudes are < 1 / I>, < 0 / 0, 

<-l/l>, <l/O>, <O/O>; the others are related by parity. Again the 

helicity amplitudes are functions of two Lorentz invariants. 

A more useful decomposition is in terms of partial waves. For 

fixed m 
2 

ml 
we consider the TTTT system as a superposition of eigenstates 

of angular momentum (in the TV rest frame) 1 = 0,2,4.. . . The decay 

angle of the TTTT system - the angle between one pion and some specified 

axis in the ~lr rest frame plays the role of the second variable. The 

partial wave expansion can be truncated after a few terms substantially 

reducing the difficulty of the analysis. There are a variety of coupling 

schemes available for connecting the TT~ system of “spin” P to the 
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II, of spin 1 to produce a total angular momentum l(=spin of $‘). We may 

choose to diagonalize the helicities of the + and the in -TI system in 

addition to J2 and J 3 - On the other hand, we may diagonalize L2 , 

the orbital angular momentum squared of the $I - (~a) system andy2 , 

the spin squared of the 4 and (TTTT) systems in addition to J‘ and J3 . 

If we diagonslize the helicities, A+ and X TIT ’ there are generally 

five amplitudes for each value of the n-r “spin”, 1 . These correspond 

to (A ~, X,,) = (1,2), (1.1), (l,O), (0, I), and (0,O). All others are related 

by parity or disallowed by the requirement IX +- Ail,\ 2 1 = spin of +’ . 

For P = O(rr-n s-wave) only (A $, Anr) = (1.0) and (0,O) are permitted. 

If on the other hand, we diagonalize L2 -9 where y= 

s +1 +cjl .x s for fixed 1 we of course have five amplitudes as well. Parity 

conservation requires L + P = even , while charge conjugation invariance 

requires 1 = even. Thus we have the allowed values (L,y) = (I ,i -i), 

(I ,I ), (1 , P +2), (I +2, P +I), and (I -2,L -1). There are only two 

TT~I-wave amplitudes L = O(“relative s-wave”), 9 1 and L = 2 

(“relative d-wave”), 9 1 . 

The purposes of this paper is to relate these various amplitudes 

to the experimental observables. Although it is possible to deal directly 

with the three-body decay, 4 It 1s more useful here to consider sequential 

two-body decays ii, ‘+ $(a~); $- p”+p*- , (a*) - TlTT * Thus we shall always 

describe the ++p- in the + rest frame, the TT’S in the IT-II rest frame 

and the 4 and the (SVT) in the +’ rest frame. 
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The plan of the paper is as follows. In Section II, decay amplitudes 

are calculated in terms of partial wave amplitudes. In the following 

section, some of the angular distributions are presented. Implications 

for 71-r phase shifts are discussed in Sec. IV. Section V is a summary. 

In Appendix A the decomposition of two-body states into partial waves is 

reviewed. The full angular distribution including the three lowest partial 

waves is presented in Appendix B. 

II. DECAY AMPLITUDES 

For the purposes at hand, it is simpler to deal with decay amplitudes 

rather than their squares. Our analysis is in terms of partial waves. We 

denote the ITT-T angular momentum in its rest frame by $, the spin of the 

+ by 2 > that of the 4’ by sc . -6, The orbital angular momentum of the 

+- (*a) system is denoted by L, . Then if we define the channel spin, 

2, by 

y=:+;t , 

we have 

g=y+yL. 

(1) 

(2) 

As explained in the introduction, both I and L are even. 

An eigenstate of J2 = s”~ L2,y2, and J 
z 

consisting of 

+a 77 ’ - may be constructed by the techniques reviewed in Appendix A. 

We find 
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J s* = l,Sz’ ’ L,Zrn> = 
Q zaszJ9z’ z 

c 
L,L ;e ,e z;s’sz> 

(3) 

L, orb 
) L, Lz;L ,e z;s, sz> = n I PC sz; -PEA z>> I (4) 

O.Lz 

in the notation of Appendix A. Here p is the momentum of the 4 in the 

4J’ rest frame for some fixed value of m 
2 

, the v-71 invariant mass 
TIT 

squared. We shall suppress indicating m 
2 

TTTT as an independent variable 

for notational simplicity. .The TT~ state entering Eq. (4) is given by 

(-pC.lz>> =e i”q-J; ;orb IqE, 47 

' z 

(5) 

‘ 
m 

where p = rnTTV sinh A and q = J TTtrmrn 2 
4 Tr * 

The operator 

3 Z 

projects out an eigenstate state of P ‘ and P z as explained in Appendix 

A. The operator KZ generates velocity transformations in the z-direction. 

The invariant amplitude for +’ to decay into $*+a- with 

, 
SzW) = sz and Sz(II) = sz is found from Eq. (A30). 

<4J, s z8 TT+iT- (n $8 “*I/ *+ 

= c 
Q ,L,JY 

Q Za Lz* 9, (cont. ) 
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D; o(“T)*<ls;I L,Lz~~~~z7<i;q~j 1, s,;.e ,P > 
Z - (6) 

Here n 
II, 

describes the + direction in the +’ rest frame, and s2 ll 

describes the r* direction in the ‘TITT rest frame. 

+ - 
The subsequent decay of + +-1 P is most easily described by 

fixing the lepton helicities since the QED coupling requires (A’, h) = 

(**8 *i). Using Eq. (A27) and absorbing certain constants we have 

Jr (L s;) = < Ir+p-, k i?++ 4J’ npp)l KS,‘> 

= c zL+i F DL:* 

Q SLY 
Me ,L,Y 4a LzO$) 

Q z. Lz’ yz. sz 

21 +1 ;k 
F 

i; 
45r D:zo(nn) E Diz.A (y2 

Throughout, A = X’ - A- is the difference of the TV+ and (J- helicities. 

In e+e- 
1 

annihilation, the $’ s are produced with transverse 

polarization with respect to the beam and the outgoing lepton polarizations 

are not observed. Thus the angular distribution is 

dra [ IJq(l, 1) 1 2 + /A(I, -I) 1 ’ + I&(-I, I) 1 2 

+ 1~~-1,-1)12 . I (8) 
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Since ld(l,l) 1 = lpf(-1, -1)) and ],/Y(f,-I)] = 14 (-1, I)) , wecan 

write simply the first two terms on the right-hand side of Eq. (8). 

Including phase space we have 

h ,“& & = 9P[lJQ1,1)l 2+ lJG,-I)(21 
*IT 4J n I-r 

(9) 

where q is the 7~ 
f 

momentum in the n-a rest frame and p is the + 

momentum in the $J’ rest frame. 

In practice, the partial wave series, Eq. (7), must be terminated 

after a few terms. We shall, for the purpose of demonstration, and with 

simplicity as a criterion consider only M 
i,L,JY = Mool' M20* 

a.ndM 
021 * 

Dropping an inessential constant we have 

&(I. 1) = MoOl&~p~ 

+M 201 ~3’ D;,*(Q ,d -,yl (“~)-~D:o*(~d”~,*(n~)+ @;o’(QJD;,; WJ] 

+M 
021 C flDzZo*(~+P.!l~l(~p)- ~~f~*t~p~,~~,,;+ ~D~~*cQJD:,:(~~,] , 

(10) 
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x 
-61, -1) = MOolDfi, ,@J 

* 

+M 201 @,,@,,)D (n $ o *,(Q p) + dz D;o*(n 
9 

+M 021 @D2 C -2~Q,lo:,~(nJ- 4 Dfl*o(n+jD~,:(n,:+ q D~o*(~+)~~I:I(~~)] . . 

(11) 

Here d,,(Q) = $ 
m’m 

(4,0,0) are the usual representation functions for 

the rotation group. Angular distributions, including only these three partial 

waves, are obtained from Eqs. (9)-(11). 

III. ANGULAR~ DISTRIBUTIONS 

The distribution as a function of Sz 
JI’ 

Qr , or C2 is obtained 
P 

simply by integrating over the two other solid angles using the orthogonality 

relation, Eq. (A3). From Eqs. (9)-(11) we find5 

(12) 

dl? 
-a lM 
% 

[ ool 1 ’ + / Mzoll ’ + 

+I Mozl 1 2(5-3co~ 0 $1 > 

001 j 2 + $1 MZOl / 2(5-3cos28 a) 
TT 

+ lMOZ112] 1 (13) 
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dl? 
-cc/M d.9 001~ 2( 1 + cos2e ) 

)I 
)I 

+ $j( / Mzol 1 2 + 1 Mo21 1 2)(f3 + cos’e ) . 
)1 

It is understood here that M 
1 PLY 

is a function of m 
TIT - 

If the p’s are not observed, the distribution is 

dl- 
2 dQdi-2 = 1 Moo1 / + 1 - cos2 e R 9 M201 1 “(2 ; 3 

+ 1 M021 / “(2 - ; cos2e +) 

+ 2Re M 
20f”001 

3 
2cOs2en - + )I 

+ 2Re M ;cos2e+-+ )I 
+ 2Re M201M021 “e 2 

C 
2 8 sin f3 TT sin B+cos 2(ocr - oJ 

+A 16 sm2Brr sin29+cos(o~ - oJ 

+* gc0s2e 
( 

-+ 
I( 

3 
57 z c0s2e 

+ 
-+ . iI 

(14) 

The full decay distribution, dF 

Tr”&L ’ 
is presented in 

Appendix B. 

The single particle distributions, Eqs. (12)-(14) depend only on 

the magnitudes of Mooi, M 
201 

and M 
021 * Joint distributions such as 

Eq. (15) depend on the relative phases of the amplitudes. 
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IV. PI-PI PHASE SHIFTS 

The angular distributions in principle determine the phases of the 

partial wave amplitudes - up to one overall phase. If the +’ and $I are 

regarded as ineOrt, then the usual final state interaction argument requires 

MP ,L,y= e 

i6p(m ) rrv 
1 Mp ,L,9/ where 6 ,” is the I = 0, 1 -wave felt 

phase shift. Thus 6 i - 6 i may be obtainable from $I ‘+ + IW . This is 

in some ways similar to the Pais-Treiman 
6 

method for obtaining ilr phase 

shifts from K e4 decays. The viability of this technique in $‘-+ TI’TT depends 

on a number of factors: 

1. Adequate data, especially for +Ndp*+p-r+a- . 

2. That some 1> 0 contributions be significant. 

3. That a few terms in the partial wave series suffice. 

4. That the assumption of noninteracting 4 and 4’ be appropriate. 

In principle similar techniques can be used for +-w*a . The analysis 

is slightly different reflecting the replacement of $I- a+~- by +-0 
w+lrTITI ~ 

However, item 4 above seems more dubious in this instance. The same is 

true for the SU(3) variants, e.g., JI+mi’r , $-wKF, etc. 

V. SUMMARY 

The results presented above and in Appendix B constitute a general 

treatment of the process efe- + V’ -+ VPF - P +P -PF, although we have 

been primarily concerned with J, ’ + +=a . In advance of data analysis 
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we cannot determine how many partial waves will be needed for an accurate 

description, but it is expected that +’ - $n* will require fewer than 

would $- orr~l . 

The determination of the partial wave amplitudes for + ‘-+nn is 

essential for evaluating the treatment 
3 by Brown and the present author 

of the spectrum dl?/dm lm * which speculated that only Moo1 is significant7 

and that its dependence on m 2 
lrlr 

is a (m - 2mrr2) 0 The isolation of the 
TTTT 

partial wave amplitudes would constitute some of the most refined 

information on the puzzling new particles. 

The obverse of the investigation of new particle properties is the 

opportunity to measure one of the “simplest” of hadronic quantities, the 

elastic ~1-71 s-wave phase shift (for I = 0) for m - 500 MeV. If there lT?r 

is adequate ~T-TI d-wave to interfere with, this will be a valuable technique, 

perhaps supplanting Ke4 decays as the best clean measurement of TT-‘IT 

phase shifts at low values of the TI -1~ energy. 
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APPENDIX A 

We review here material which is well-known* for the purpose of 

completeness and to establish our conventions. The significance of the 

orbital angular momentum, L,, and spin angular momentum 2 , is 

stressed. Of course, the heart of the matter is the rotation group (and 

its covering group, SU(2) ). 

An element of SU(2) may be specified by three Euler angles, 

0 5 a 5 2lT , 0 5 p 5 lr , 0 5 y 5 4rr. We adopt the symbolic notation 

2 to indicate a set of such parameters, and e -i ~0 J 
- * to indicate the 

-iaJ 
z 

-ipJ -iyJ 
associated rotation, e e ‘e ’ . The group integration element 

is d$ = da d cos (3 dy/(16T2) so 
I 

d: = 1 . 

The standard representation functions have the properties 

DA,,(z) = <jm*l e-‘:‘; 1 jm> 

-iem’ 
=e dAern (Pk-lym , 

c Dj 
m’ 

mm.(gl)Dj ,.,~~(~,) = D~..(ru1~2) 

I 
dg Dj (u) d * ,(L?) = 

fJjjAm m. 

m2ml .a, 
m;m2 * (Zjtl,l 

brn m. 
2 2 

6$x 
-1 

,uo, = c 
j,m,m’ 

(2j+l)D~,(~-1)D~m,[UUo) , 

(Al) 

(A.3 

(A3) 

(A4) 

D4 j2 
rn;rniQD 

m;m; (:) = 
c 

j,m*,m” 
D~.m.,($<j.m*l j ,m;;j2,m’> 1 2 

<j,m’*l jl,m;C;j2,m;> . (A5) 
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In Eq. (A4) 6 ~(u,-‘~~) has the meaning dx 6 U,(&,)f(u,) = f$,). 

h Eq. (A5), <j.mIjl,ml;j2s m2> is the usual “Clebsch-Gordan” 

coefficient. 

We suppose we have sn irreducible unitary representation of the 

Poincare! group associated with a particle of mass m and spin s . The 

homogeneous transformations are generated by ,J and 5 (“pure boosts”). 

Translations are generated by Pp . 

We denote rest states by / po, m’> where p. = (m, O,O, 0) and 

JzI Po,m’> = mp 1 po.m’> . It follows that for 2, a rotation, 

2 IPO’ m’> = c DS m.dm, (g) I po, m”> V 
m” 

We next define two bases for our space, using improper vectors as this 

is most convenient. The first is the celebrated helicity representation. 

If (3 and o are the polar angles of E , we set 

-i$J -iO J -ikK 

hE! 

z =e ‘e ’ (A7) 

where m cash A = p” = LqTe 
-iAK 

For g = 1 e/i , he = e ’ ; for 

R = _ lx 15 , he = eias e-itrJ~ e‘inJyemiXKZ . We define the basis states 

1 es x>= hE Ipo>b . Lw 

These have the well-known property 

J-c /~,h> =X/x!/ /e,o . (A9) 
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The second basis9is defined with the z-component of spin in mind, 

rather than helicity. We set 

-iX*K 

Se 
=e *-u (AlO) 

b z s s= (All) 

where k is parallel to Q and m cosh(kl = p” . With the conventions 

J I2 = (JJ, , Jo* = (F$, etc., J’” = -J”p , e0123 = +i we set 

(A12) 

(A*3) 

(Ai4) 

WcI= +E 
lJ.vb 

PvJhu . 

From Eq. (Al2) it follows that 

W. =,p’J , .b 

The vector Wp gives rise to the Casimir operator WpW’ = -m2s(s+l) . 

It is well-known that the spin operator 

PO $=$ y-- ( I P”+m 
(Af5) 

satisfies SU(2) commutation relations: = ie.. S From (Ai5) 

[ 1 
ijk k * 

we see S is a vector, so J,, S = ie S 
.% 1 j ijk k ’ 

This implies that ,L = J-S 
.b‘b 

commutes with 2 . It is easy to see that 

ZkJ sz>> = 
‘Em- 0’ 2. 

LwJp s > 

= 
72 - 

Jipo~sz> . (Al(J) 
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In particular, 

%I& 7, s >7 = SzI&Sz>> (Al 7) 

and 
- iu*S 

e -.* l~,s~>> = c D& ($j&~;~ . (A181 

“i 

On the other hand, 

e-‘E’ i 1 & s >> = -iu.J ih*K 
z 

e *-e - - pO,sz I ’ 
. 

-iA ‘K -iu’ J = e -.,-e -bs IP@s > 

=I2 
& (:)I Q’.s; 2 (Al9) 

z z 

where k’ and 2’ are ,X and R rotated by g . Thus we infer that 

e-i:& iB sz ,, = +iu.S -iu.J e **ue w- jp,s >> 
z 

=c 
’ $.a s &-i)Ds, ,s (u,, 1 Q’ a Ic,’ = 

z z z z 

= [ g*,sz 77 . (A2’3) 

-iu. S -iu*L 
The transformations e - % and e - * are not Lorents 

transformations. However their actions are well-defined through Eq. (A15). 

On an eigenstate of P’ 
-iuS 

, e + I acts in the same way as a Lorentz 

transformation, but which particular transformation depends on both u * 

and 2 . The operators L, and 2 do generate independent SU(2)ls which 

are realized on the single particle states. 
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The discussion of two particle states is facilitated by the 

introduction of projection operators: 

ni,,, = d\I2j+i)4G JdE di,,m(x-*) -iu’J e *D’C . t-422) 

It follows that 

-iu.J 
e +- (A23) 

and j - iuJ 
z 

m’.m e 
E e-icy-f,m * t-424) 

This means produces states which transform as ] jm> and 

annihilates ( jm” > unless my = m’ . We define 

) jm.$X2W) 7 = k-5) 

where W = (g2+m i2)i + (R2+m22)+ . The subscript t-3 is required 

by Jz~p~,A1;-p%)\L> = (x,-$,~p~,~~;-pi,y . 

Our single particle states have the covariant normalization, 

CR’, A’ 1 g, X7 = (2E)(2nb3 6 3(&)6,, . 

The matrix element between a plane wave rotated by 2 from the z-orientation 

and a spherical wave is 

<p’Z. x;;-PG. X$ 

= <p’z, A’.- 1’ P’Z, A’2 1 g, oJ,~~,md-I;_l,mOO 

1 PZ, Af;-Pz^, 5’ 
(cont. ) 
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= CJ du’R,?j+i)4s’Dj 
m4z * 

(u-‘)Dj 
mH,m * “1..3,m.*““*-*’ 

, 

= 
J-- 

zj+l .j 
4rr ++,“(:% AIh16 LL[2P0(2$~(P-Pq , 

u27) 

Eigenstates of L2 and L z are constructed with the projection 

operator formed from L, = $ - S - S 
4 -2 

f ,orb 

nrn*,rn=J J (21+ 1)4i-r’ d,u Djm ,m(~-i) 
-iu.L 

e -*. NW 

We define 

If p zSlzS2z 

I ,orb 
(W> =n, p )P~,slz;-pzI’s2z~~ . 

’ z 
(A29) 

The matrix element between 

wave is easily calculated: 

> and a spherical 

<< p’z’,s ;z;-p’&s;zI .+iu*L - * If 1 zsizs2z(w) >7 

= <<p’Z, S&i-p’i, s;, 
‘5. D;,. (g? J z 

d(2.t +1)4r’ J du’Di my (U.-I) . - eqig’*k / PZ, Slz-’ -pz. s2z” 

=J- 
21+1 DP 
4rr, o p ($)6 .6 

siislz 
. 

z s2zs2z 

c 
2po(2r)3 6 . 

PP’ 1 L430) 
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Since ~=~1t,S2 and i =&tS I 9 we can use the usual rules for 

addition of angular momentum to define 

) jm1 s(W)>> = c 111 p 
z’ sz 

zs Slz’ szzm ’ 

<j,mlf .I z;s. Sz’ is. sz 1 sl, s*p2, S& 7 . (..431) 

This is an eigenstate of J2# L2,S2 and 3 2. The transformation between 

1 jm1 s(W)> and ) jm$\(W)> is given by 

< jm* AiA>(W’) 1 jm 1 s(W)> 

= hrnrn.6 jj, ;-A;1 s l, A;;s2, -Ai> 

<j,A;-A~IL,O;S,A;-A~> 2~‘(2,)~- 
C 

. 
PP 1 (A32) 

On the other hand, the orthogonality relation for < jmA, A2(W) 1 reads 

<jm’A;Ai(W’)/ jmAiA2(W)>= bjj.5 
mm’ c 

2pO(2rr)3 6 
I PP * 

(A53) 

As a final note on our conventions, the definitions of h 
I?[ 

Eq. (A7)] 

and sE [Eq. (AIO)] d f’ e me the coordinate systems with respect to which 

directions are measured. For example in Eq. (A27) the coordinate system 

with respect to which particle i’s helicity (and possible subsequent decay) 

is to be measured is obtained from the initial frame by the Lorentz 

transformation h 
Jh 

so the associated x-axis lies in the plane containing 
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initial quantization axis and the direction of motion. For states / g, sz>>, 

the reference frame is obtained from the initial frame by s 
e’ 

the pure 

boost, Eq. (A10). 
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. . 

APPENDIX B 

We display here the full spectrum obtained from Eqs. (9)-(11) 

which use only the first three partial waves M 
L,wy’ 

dl? 
andi2 dc2 = 1 MOOi j 2~:1(e J2 + dil, i(eJ2] 

+ / Mzol 1 ‘[$6;8 f2 (d;l(e ,J2 + d_illW J2) + 3dfo(eT)2d;l(e J2 

t +dio(B J2 
( 
d;&B J2 + d’ &y2 1 

t 2&?d2 (‘3 )d2 (‘3 )di 
20 ll 00 TI l-l (0 Id1 (0 tl il p )cos WJ~-~,) 

+ -~d,20(~,)+3~d;oK’n) d;o(eT)d;i(ep) d:l(~$-d;ll 
( 1 ( 

(0 )) ~ cos($&) I 

+ ( M021 j 2[3d;0(e+j2(d:l(e ,J2+d;ll@ J2) + 3d;0(@,j2d;i(e ,j2 

++dio(B J2 d:&B J2+d1 
( -ll(e ,)“) 

f 2fid2 (0 )d2 (0 d’ 
1 

20 $00 $1-1 (0 Id (0 p Ii p )cos 2k5~-$Jp) 

-+@d,2,(Q’+3h/ZId2 (0 
20 J 1 d2 (0 )dl (0 10 + 01 p ) ( 

d;l(~p)-d~ll(~p) 
) 

cos(Q $1 
3 

+ 2Re M 201~00i 
“’ 

[ ~d~o(eil)d:l(~~)d~ll(e~) ~0s 2(cb,-$,) 

- ~d~o(~n)d~i(8~(ei’mH-~‘d~1(0~-e-’d~-~~dfll(8~) 

+ e d;OV=’ J d$ J2 f )I 
(cont. ) 
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* 
t 2Re M 

02i”00i 2nd’ (0 d’ (0 )dl (0 
20 d 11 p -11 p 

)COS 2($+-4,) 

-s $dfo(e,Jd&(ep) e ( 
it4 -4 1 

4~ ’ dil(ep) - e-i(‘j,-‘p)d~ii(e 
P 

) ) 

+ q d;,(e ,j(+e ,J2 + d;llb9,)2)] 

+2Re M 201M02: C 3d;0(e Jd2 (8 20 lj” ( 
-Wn-4ddl (e )2t, 2i(blr+Jjdl 

11 P -1p J2 

+ 3 d:o(eT)d~o(e~)cos(rn,-~~d~l(e~)2 

+ + d;o(en)d;o(B J1’ &[e J2 + dfll(e J2 ( ) 

- $ d~o(e,Jdfo(e ,jdii(ep) ( e 
U24T-8+-bp)dl 

Jep)-e 
-WP,r-4~-OT) 1 

dli(ef.l) ) 

-& d~o(O~)d~o(~,,jd~,(~,J i e 
i(Q$+dp-24+)dl 

-Jep) - e 

-i(bn+b,-WJ i 

dii(e&) 1 

fl2 
-2 d,,(~$0(~ $&(fJ J ( e 

UbT-b,) i 
d (0 )-e 

-i(b71-Qp) i 

11 P 
d -Ilte J ) 

G2 
- 

- y- doof n)dfo(@,jd~l(e @) e ( 
i(4 -4 ) 

’ ‘dii(8 p)-e 
-i(Qp-b+) 1 

d 1 -Jep) 

+ fld;o(e n)d;o(e d;+(@ Jdl 
d -IIce J co.3 2(~n-~,) 

+ fid,Z,(e a)d;o(e$&(s $dfii(@ J cos w+-rnJ] . 

631) 

The frames with respect to which angles are to be measured are 

discussed at the end of Appendix A. 
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